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The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a
U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy
viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate
ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models
fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of
the underlying assumptions used in the development of algebraic stress models are investigated and compared with
the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds
stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of
strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit
algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near
the convex wall.

I. Introduction

ANY flowfields being calculated by computational fluid dy-
namics (CFD) codes are so complex that it can be difficult to

determine the source of error in comparison with experiment. For

example, the flow over a multielement airfoil contains a wide vari-

ety of challenging physical processes, including confluent boundary

layers, wakes in adverse pressure gradient, separated flows, possi-
ble unsteady flow, possible shock-/boundary-layer interactions, and

significant streamline curvature. Current state-of-the-art CFD codes

do not predict certain aspects of the physics of multielement airfoil
flows accurately enough for design studies. 1Turbulence models are

often assigned the blame, but due to the complexities of the multi-

element flowfield it is not certain why the models are deficient. (In

fact, many other factors may contribute, such as improper transition

modeling or lack of three-dimensional effects in two-dimensional

computations.) For turbulence model developers to determine bow
to improve their models, it is important to isolate and quantify the

various effects of significance to the problem of interest, and to
evaluate turbulence models in such flows.

For example, the flow off the main element on a multi-element

airfoil configuration can turn as much as 30-40 deg as it passes over

the flap. It is possible that such turning (convex curvature) has an

impact on the Reynolds shear stresses in that region, which in turn

may affect the mean flow over the flap. Comparisons of computed

Reynolds shear stresses with experimentally measured values in
the flap region indicate that some discrepancies exist, z Currently,

it is uncertain whether the disagreement is due to the turbulence

model itself, or whether other factors are to blame. In particular,
note that the _/R parameter (boundary-layer thickness over radius

of curvature) that defines the turning of the flow over the flap can be

on the order of 0.01-0.1, depending on the particular configuration
and whether the main element wake is included in the determination
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of& In general, S/R < 0.01 represents very mild curvature, whereas

0.1 < _/R < 1 represents moderate to strong curvature)

Monson and Seegmiller 4 and Monson et al. 5 performed a nomi-

nally two-dimensional experiment on flow through a U-duct (with

aspect ratio 10 and side-wall suction upstream of the bend) and

evaluated the abilities of several turbulence models to predict both

the mean flow (velocity profiles, skin friction, and surface pressure)

and turbulence quantities (turbulent kinetic energy and Reynolds

shear stress). The curvature was strong in this setup, with _/R ap-
proximately 0.5 around the inner wall. The U-duct is representative

of many internal flows of engineering interest, such as flow in the

turnaround duct in the Space Shuttle main engine powerhead.
Although the Monson and Seegmiller 4 data contains separated

flow on the inner wall beyond the bend and, therefore, is unlikely to

retain its two-dimensional character at and beyond this region, the

flow in the bend leading up to separation is well defined and nomi-
nally two-dimensional. Therefore, it is an ideal test case to investi-

gate the effect of strong convex curvature and to evaluate the ability

of existing turbulence models to predict the physics of curvature.

Sandbom and Marcy 6 investigated a U-duct configuration in a wa-

ter tunnel and reported similar results to Monson and Seegmiller's

data in the bend upstream of separation. Many other curved duct

flow experiments have been performed (e.g., Refs. 7-11 ), but most

either do not explicitly define the outer wall geometry or else have

lower aspect ratios (and hence more significant three-dimensional

effects). These ambiguities limit the usefulness of such studies for
turbulence model validation.

In Ref. 5 seven isotropic eddy viscosity turbulence models (one

algebraic and six K-e models) evaluated against the Monson and

Seegmiller 4 data met with varying degrees of success regarding pre-

diction of skin friction, but none of them consistently predicted the
measured mean velocities downstream of the turn or the turbulence

quantities in or downstream of the turn. Luo and Lakshminarayana t2

computed the same configuration using four levels of turbulence

model approximations: a linear eddy viscosity K-e model, a non-

linear (NL) K-t model, an implicit algebraic Reynolds stress model

(ARSM), and a full Reynolds stress model (RSM). All models were

linked to a near-wall one-equation model near y+ = 70. The eddy

viscosity model predicted very high Reynolds shear stress over the

convex wall and a too-small extent of separation. The other models

were better, but only the RSM predicted nearly complete suppres-

sion of Reynolds shear stress over the convex wall as seen in the

experiment.

Many other computations of turbulent curved flows for sim-

ilar configurations have been done, only a few of which are
mentioned here. Rodi and Scheuerer 13 examined three extensions

to the K-e model, including an algebraic stress model without
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curvature-specific empiricism. They found that this algebraic stress

model gives the best overall agreement in the curved part of the flow.

Luo and Lakshminarayana _4 found that, although an RSM can suc-
cessfully capture the large damping of turbulence near a convex wall,

it underpredicts the enhancement of turbulence near a concave wall;

to capture the amplification, they concluded that the standard e equa-

tion needs to be modified, lacovides et al) 5 evaluated an algebraic
stress model and Shima 16 evaluated an RSM; both methods were

found to be superior to linear two-equation models for curved flows.
Rumsey et al. t7 evaluated several turbulence models for multi-

element airfoil flows. Two of these models, the one-equation
Spalart-Allmaras 18 (S-A) and the two-equation Menter 19 shear-

stress transport (SST) K--w, are isotropic eddy viscosity mod-
els that are used extensively in production CFD codes. The third

model is the explicit algebraic stress model (EASM) of Gatski and

Speziale. 2° For the flowfields explored by Rumsey et al., 17 all three

models showed minor differences from each other, but they also

each showed gross deficiencies in comparison with experiment, at-
tributed primarily to poor transition modeling over the slat. Because

of the gross deficiencies, it proved to be impossible to distinguish
among the turbulence models themselves or recommend areas for

turbulence model improvement.

In the current work, we apply the same three turbulence models

to flow in the two-dimensional U-duct, and investigate their ability
to model the physics due to strong curvature. We focus our attention

primarily on the inner (convex) wall upstream of separation, where

the experimental data is nominally two dimensional. Recent ad-

vances in the explicit algebraic stress formulation 21-24 are explored

in relation to this flow. Then, the assumption of Reynolds stress
anisotropy equilibrium used to derive the EASM is evaluated and

subsequently modified to account for curvature in that model. Note

that we do not seek to develop an ad hoc curvature correction for the

EASM, but rather we seek to evaluate and improve the assumptions

made in its derivation directly from the RSM in a mathematically
rigorous fashion. Both the U-duct and a second experiment of Smits
et al. 25 are used for validation of the EASM curvature correction.

Through this study, flowfield curvature, one of the component

physical processes of possible importance in the flow over complex
configurations, is explored. Separate on-going work focuses on other

aspects, including wake development in an adverse pressure gradi-
ent and transition. By exploring the component pieces (that is, unit

problems), we hope to address specific deficiencies in existing tur-
bulence models and develop better turbulence models in the future.

II. Description of the Codes

The computer code CFL3D 26 solves the three-dimensional, time-

dependent, Reynolds averaged Navier-Stokes equations with an up-

wind finite volume formulation. It can solve flows over multiple-
zone grids that are connected in a one-to-one, patched, or overset

manner and can employ grid sequencing, multigrid, and local time

stepping when accelerating convergence to steady state. Upwind-

biased spatial differencing is used for the inviscid terms, and flux

limiting is used to obtain smooth solutions in the vicinity of shock

waves, when present. Viscous terms are centrally differenced, and

cross-diffusion terms (which only come into play on nonorthogonal
grids) are neglected.

The CFL3D code is advanced in time with an implicit approxi-
mate factorization method. The implicit derivatives are written as

spatially first-order accurate, which results in block tridiagonal in-

versions for each sweep. However, for solutions that utilize flux-

difference splitting, the block tridiagonal inversions are further sim-

plified using a diagonal algorithm with a spectral radius scaling of
the viscous terms.

The turbulence models are solved uncoupled from the mean flow
equations. Descriptions of the S-A and SST turbulence models can

be found in their respective references,18.19 and a detailed description
of the EASM is given in the next section.

The computer code ISAAC 27 is also employed in one portion of

the current study. The ISAAC code is functionally very similar to

the CFL3D code, but it possesses higher-order turbulence models,

including RSMs. The turbulence models in ISAAC are solved fully
coupled with the mean flow equations.

III. Algebraic Stress Model Methodology

The application of algebraic stress models (ASMs) to a variety of
flow problems has become commonplace. With this increase in use
has also come a variety of formulations. These formulations differ in

the number of basis terms used in the tensor representation and in the

particular means by which the ASM is implemented. The ASM used
in this study is based on the model originally developed by Gatski

and Speziale, 2° but extended and implemented based on a formu-
lation developed by Jongen and Gatski. 2s The reader is referred to

these earlier studies for additional background.

A. General ASM

The common starting point for the development of ASMs is the

modeled transport equation for the Reynolds stress tensor r# given
by

2K Dt -_ -_ - Dij- 2K J

=-lbij-a3(b,,Skj+Sikbkj-2bttSt,,ij)

+a: (bikW_j- Wi,b_j) - Rij

- lb-a3 bS+Sb--_lbS}! +a2(bW-Wb)-R
a4

(1)

where K = ½rnn is the turbulence kinetic energy, Dij is the turbulent

transport and viscous diffusion tensor, and {bS} = bijSji iS the trace.
The tensor R = a LS when a linear pressure-strain correlation model

is assumed as well as an isotropic dissipation rate e, but R can in
general be any symmetric traceless tensor. 28 The kinematic strain

rate and rotation rate tensors, S_ and W_._,respectively, are

1(o.i ifou, ou,5
s. = + T£x,:' w. = T£x,:

and the Reynolds stress anisotropy tensor is defined as

bit = rij/2K - lg_i./ (2)

The coefficients al are directly related to the pressure-strain corre-

lation model used in closing the stress transport equation. This study
uses the Speziale-Sarkar-Gatski (SSG) pressure-strain model, 29
which yields

a, = ½(4 _ C,,), a2 = ½(2- C4)

a3 = ½(2 - C3), a4 = gr, r = K/e (3)

1
g = [(C_/2 + 1)(T'/_)+ IC ° - 1]-'= [y0(P/e) + y,]-' (4)

where C° = 3.4, C_ = 1.8, C2 =0.36, C3 = 1.25, and C4 =0.4.

An implicit algebraic stress relation is obtained from the mod-

eled transport equation for the Reynolds stresses [Eq. (1)] when the
following two assumptions are made:

Dij = (r_j/2K)D.. (5)

Drij _ rii DK
Dt K Dt (6)

Equation (6) is equivalent to requiring that the turbulence has

reached an equilibrium state, Db/Dt = 0. With these assumptions,

the left-hand side of Eq. (1) vanishes, and the equation becomes
algebraic:

- (1/a4)b - a3 (bS + Sb - 3 {bS}l) + a2 (b W - Wb) = R (7)
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Equation(7)hastobesolvedforb and is an implicit equation. For
the case R = a tS, an explicit solution of Eq. (7) has been obtained by

Gatski and Speziale 2° for two-dimensional mean flows in the form

b=_ts+_2(sw-ws)+_3(s 2- _ls2}1) (8)

where the _i are scalar coefficient functions of the invariants

rt2(={S2}) and _2(=-{W2}/{$2}). (Here, 7Z2 is a nondimensional

flow parameter that is very useful for characterizing the flow232°;
for example, for a pure shear flow _2 = 1, whereas for a plane strain

flow _2 =0.) A new methodology for identifying the coefficients

ai, such that Eq. (8) is the solution of the general stress relation

Eq. (7), will now be derived.

B. Explicit Solution
Consider a three-term tensor representation given by

3

b = E °tnT(")
n=t

(9)

with the three-term tensor basis T("):

T (t) = S, T _2)= SW - WS, T (3) = S 2 - ½{$2}I (10)

As discussed by Jongen and Gatski, :8 higher-term bases (N > 5) are

also possible, but we consider here only the three-term basis, which
is exact for two-dimensional flows.

Equation (7) can be solved via the Galerkin method by projecting
this algebraic relation onto the tensor basis T ('') itself. For this, we

form the scalar product of Eq. (7) with each of the tensors T (m)
(m = 1, 2, 3). This leads to the following system of equations:

rl=t L -4

r",) ] = (R,r,-') (11)2a2 (T_") W ,+

where, for example, the scalar product is defined as (T ("), T (m)) =

{Tt")T(m)}. In a more compact form,

3

_-] _.&.. = (R, r"') (12)
n=[

where the 3 x 3 matrix A is defined as

Anm _ -(l/a4)(T f">, T (m,) -- 2a3(T (")S, T (rn))

+ 2a2 (T <")W, T_")) (13)

In the two-dimensional mean velocity field case, the matrix A is

--(1/a4)r/2 -2a2r/4R 2 -½a3r/4
A.,. = 2a2 r/4 T_ 2 -- (2/a4) r/47_2 0 (14)

--1a304 0 --(l/ra4)r/4

which, when inverted, leads to the following expressions for the re-

presentation coefficients:

at = --(a4/_0r/2) ({RS} + 2a2a4{RWS} - 2a3aalRS2}) (15)

 Rwsl]or2 = a4 a2ott + 0"_--_2 j (16)

6{RS2} ]u3 = -a4 2a30q + -----_j (17)

where ao = (1 _ gu3u4q2_2 _2_2 + 2a22a2t/2R2). This set of equations is

the general solution valid for two-dimensional mean flow and for

any arbitrary (symmetric traceless) tensor R.

Substituting Eqs. (15-17) into Eq. (9) leads to the representation

for the Reynolds stress tensor r:

r= -_KI-2(-Keq) S+ a2a4+ o/lo4,T_--'------_ (SW-WS)

- (2a3a, + 6a4{RS2} _ (S 2

where the -Koq term is equivalent to an effective eddy viscosity

v* = C_K2/e. In most standard K-e models, C_, is taken to be a
constant value (near 0.09). In contrast, the explicit solution has the

effect of yielding a variable C_ in the linear component of the stress.
As noted earlier, when a linear pressure-strain correlation model

is assumed as well as an isotropic dissipation rate, then R = alS.

This expression leads to a right-hand side for Eq. (12) proportional
to

(R,r"')=/-2iRWS /=
L {Rs_} J

(19)

Thus, in Eqs. (15-18), {RWS} = {RS 2} =0 in this case.
This result can be related to earlier formulations involving the

three-term basis. From Eq. (3), the coefficient a4 is dependent on g

and as such has a direct dependency on the ratio 79/t from Eq. (4).

The solution proposed by Gatski and Speziale 2° for the EASM fixed

the value of g. When R = aiS, then

-3ata4
O_ 1 _--- (20)

3 222 222 2- 2a3a4rl + 6aza40 T_

In an alternative approach proposed by Ying and Canuto 2t and
Girimaji, 22 the value ofg is not fixed; the variation of the production-

to-dissipation-rate ratio in the flow is accounted for in the formu-

lation. This approach can also be accounted for in the present for-

mulation. It is easily shown that the production-to-dissipation-rate

ratio is given by

"P/e = -2{bS}r (21)

Previously, it has also been shown 23'28 that the invariant {bS} is

directly related, for two-dimensional flows, to the coefficient _l

appearing in the tensor representation through

{bS} = at 02 (22)

From Eqs. (3) and (4), the coefficient a4 can then be written as

_, = [r, - 2_,o,,,_]-' _ (23)

The dependency of a4 on the production-to-dissipation-rate ratio

through at makes both sides of Eq. (15) functions of oq. This de-

pendency results in a cubic equation for ot_ given by

I [" 2
ro2a_ _ _Y°Yt- 2 + _'t - 2rZYo{ RS}

02 l. _t L

+ 4_[yl {RS} + 2r(a2{RWS} - a3IRS2})] = 0 (24)

Even with this more complicated expression for at, the expansion

coefficients of the nonlinear terms "2 and or3 retain the same func-

tional dependency on _1 as before. When expressed in terms of the

production-to-dissipation-rate ratio with R = atS, Eq. (24) can be
shown 23 to be equivalent to earlier results. 2t.22

Recent results 2tin as well as the results from this study have

shown that robustness characteristics and predictive performance are

improved when the variation of the production-to-dissipation-rate

ratio is allowed. Thus Eq. (24) (with R = at S) is currently solved for
%. Previously, 2t'22 the selection of the proper root for the solution
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of Eq. (24) was done on the basis of continuity arguments. Here

the proper choice for the solution root is based on the asymptotic

analysis of Jongen and Gatski} 4 It was found that the root with the

lowest real part leads to the correct choice for al. The remaining

expansion coefficients a2 and ot3 are then extracted from Eqs. (16)

and (17).

The explicit tensor representation given in Eq. (18) is coupled

with a K-e two-equation model. The transport equations for the

turbulent kinetic energy K and dissipation rate e are

DK =79-c+ v+-- _ (25)
D--7 o.,<;0x,j

=  :-79 2- + + (26)

where v is the kinematic viscosity, vt =CuKr is an equilibrium
turbulent eddy viscosity, and

79; -rij _ = -2{bsl,r (27)

f_ = [1 - exp(-Rex/lO.8)], Rex = (K½d/u) (28)

<.,<=1.o. <,,= - c,)]
s¢ = 0.41, C_i = 1.44, C_2 = 1.83, C u = 0.096

(29)

and d is the distance to the nearest wall. Additional wall damping

functions (such as f_,, to achieve expected asymptotic behavior of

the turbulence quantities very near the wall) are not employed in the
current model. This avoids the need for further calibration constants

and has no noticeable effect on c/ or any turbulent or mean flow

prediction in and above the log layer.

IV. Results

The U-duct configuration is shown in Fig. 1. The turn has an

inner radius of ri = 1.91 em and an outer radius of ro = 5.72 cm.

The finest grid employed is 417 × 153 and extends from x/H = -4

upstream of the bend to x/H = 13.12 downstream. The minimum

normal spacing at the walls is 1.0 x 10 -5 cm, which yields an aver-

age y+ value of less than 0.2. Coarser grids, used to investigate grid

sensitivity, are formed from the fine grid by successively eliminat-

ing every other grid point. (The grid shown in Fig. 1 is a part of the

medium-level 209 × 77 grid.) The nominal Mach number for this
flow is M = 0.1, and the Reynolds number based on channel width
H is 10 6,

At the upstream boundary, the u-velocity profile is set based on
the experimentally measured skin friction and boundary-layer thick-

ness. The K and e values are specified in a way similar to that used

by Monson et al.: as follows. In the near-wall region (y+ < 4), the
values for K are obtained from the expression K + = 0.05(y+) 2. The

peak K is specified to match experiment and is assumed to be at
y+ = 20. The value of e is computed from e = C314K312/Lm, with

x/H=0 (180 deg) x/H=,0.5 x/H=2

I I I

90 c_g

Fig. 1

IH=3,81 cm

I I
x/H.0 (0 (:leg) x/H. -2

U-duct configuration (portion of 209 X 77 grid shown).

Cf

Fig. 2

0.016

0.012

0.008

0.004

/.'I

0.000

-0.004 , I ,

16 20

fine
....... medium
..... coorse

I'

t)'
I t." _ I * I i I

24 28 32 36

s/H (21.7 < bend < 24.8)

Effect of grid density on inner surface skin friction using EASM.

L,, = xy in the inner region and L,.,, = 0.098 in the outer region. Also
at the upstream boundary, the density is specified at P/Pref = 1, and

the pressure is extrapolated from the interior of the grid. At the

outflow boundary, pressure is specilied at p/p,_f = 1, and all other
quantities are extrapolated from the interior of the grid.

A. Grid Sensitivity Study

Figure 2 shows the inner wall skin-friction coefficient using the

EASM turbulence model on three grids. The s in Fig. 2 indicates the

distance of the channel centerline from a reference point approxi-

mately 83 cm upstream of the start of the bend. Except in the sepa-

rated flow region, there is very little difference between the medium

and fine grid results. The coarse grid (105 × 39) yields significant

differences from the two finer grids even outside of the separated re-

gion. Results using other turbulence models show generally similar

or smaller grid sensitivities. Although not shown, mean flow and tur-

bulence quantities upstream of separation indicate grid-converged

levels even for the medium grid.

For the remainder of the study, all results (with one exception)

were obtained using the fine grid only. On the basis of the results

of this grid sensitivity study, we are confident that even the medium

grid level is fine enough to capture the essential physics of this

case, particularly upstream of the separated region (which is our

primary focus in this study). Use of the fine grid adds an additional

level of confidence that any differences between computations and

experiment are due to the modeled physics and not due to numerical
discretization errors.

B. Results Using Three Turbulence Models

The three turbulence models used in this study represent three

successive levels of representation in describing the development

and evolution of the turbulence. The EASM represents the highest
level; it is derived directly from the RSM as described earlier and is

implemented in a two-equation K-e formulation. The SST model

is a two-equation linear eddy viscosity model, and the S-A model

is a one-equation linear eddy viscosity model. (The RSM, results of
which are discussed in a separate subsection, utilizes seven equa-
tions to solve for the turbulence. Its results are not included in this

section because the RSM is generally too expensive. Therefore, it is

not considered to be a viable model at the present time for general

use with complex configurations.)

Although not shown, all three turbulence models do an excellent

job predicting the flow upstream of the turn. At the start of the bend,

at x/H = 0 (0 deg), however, computed Reynolds shear stresses

are already showing significant differences from the experimentally

measured levels (Fig. 3) near the inner wall. In Fig. 3, u,_f is the

velocity corresponding to M,_f = 0.1, and dist --- 0 at the inner wall.

Although not shown, all models at this x/H = 0 (0 deg) station still

predict the mean streamwise velocity in good agreement with each

other and with experiment.
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Fig. 3 Reynolds shear stress at 0 deg in the bend.
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Fig. 4 Streamwise velocity at 90 deg in the bend.
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Fig. 5 Reynolds shear stress at 90 deg in the bend.

Figures 4 and 5 show mean streamwise velocity and Reynolds

shear stress, respectively, at the 90-deg position halfway around

the bend. All models predict similar velocity profiles (Fig. 4).

Overall, these results are in reasonable agreement with experiment,

although the velocity magnitude near the inner wall is slightly over-

predicted and the velocity magnitude near the outer wall is un-

derpredicted. In Fig. 5, the results for the three turbulence mod-

els are very similar near the convex wall: None of the models

predict near-zero levels of Reynolds shear stress, as seen in the

experiment.

In the outer half of the channel, all models underpredict the

magnitude of u'v'. This behavior was also seen by Luo and
Lakshminarayana. ]2 Some researchers have found that three-

dimensional Taylor--Gortler (streamwise) vortices may exist near
concave walls, but their existence is disputed) Nonetheless, span-

wise variations are often seen, bringing into question the suitability

of two-dimensional computations for predicting quantities near a

concave wall. For this reason, in the remainder of the paper we focus

only on the behavior of the turbulence models near the inner (con-

vex) wall. The suppressive effect of convex curvature on Reynolds
shear stress is well known, and it is believed that the Monson and

Seegmiller 4 experiment suffices as a suitable testbed for investigat-

ing two-dimensional turbulence model behavior in that region.

Pressure and skin-friction coefficients along the inner wall are

shown in Figs. 6 and 7. All three turbulence models predict the

separation location somewhat too far downstream in comparison

with experiment, but predict comparable separation lengths in good

agreement with the data. Overall, the EASM predicts the pressure

levels downstream of the bend in slightly better agreement with

experiment than the predictions of the other models. Although not
shown, note that all three of the turbulence models exhibit a too-slow

recovery from separation. This trend was also seen in Ref. 12 and is

a well-recognized feature of most turbulence models in use today, n

C. EASM Analysis
The EASM used in this study accounts for the variation of the

production-to-dissipation-rate ratio; that is, g [Eq. (4)] is variable.

Cp
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--,3 J

16

I
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Fig. 6 Inner-surface pressure coefficient.
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Fig. 8 Effect of constant g = 0.233 (Ref. 20) in EASM on the Reynolds
shear stress near the inner wall at 90 deg in the bend.
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Fig. 9 Production-to.dissipation-rate ratio near the inner wall com-
puted at three stations.

As will be shown, ifg is held constant 2° at 0.233 (corresponding to

the equilibrium value of T_/e = 1.886 for homogeneous shear flow),

predictions of turbulence quantities in the curvature region of this

flowfield are poor.

For example, computed Reynolds shear stresses at 90 deg in the
bend using EASM with constant g = 0.233 are shown in Fig. 8 in

comparison with results from the variable g model. The constant

g model dramatically overpredicts the magnitudes of u'v' near the

inner wall in this region. (K, not shown, is also significantly over-

predicted.) The constant g model also yields a significantly smaller

region of separation in comparison with the other models. 33

As shown in Fig. 9, the computed value of 3o/e is far from 1

(which is the equilibrium value in the log layer of a channel flow)

over much of the channel outside of the inner-wall log layer at the
stations where curvature is present. Figure 10 is a plot of the flow
parameter 7"¢,2 as a function ofy + at the same three locations shown

in Fig. 9. At the x/H = -2 station well upstream of the bend, R2 ,_ 1

(except in the middle of the channel), representing pure shear flow,

as expected. Also, 7_2 _ 1 within the lower part of the log layers at all
2

three stations. However, _ deviates significantly from I for the flow

outside y+ m, 500 at the two stations in the bend. At both locations,

7_ 2 approaches 0 at large y+, representing plane strain flow.

As discussed by Rumsey et al., 33 EASM with variable g and

EASM with constant g behave quite differently when 79/e is far
from 1-2. In particular, when T_2 is near zero and "P/e > 2, the

constant g model yields smaller values of qr for a given value of

?/e. Because oq is proportional to -(P/e)/02 [from Eqs. (21) and

X=O

0 001 _'/

Fig. 11 Contour plot of DbHIDt in the vicinity of the start of curvature
using RSM (flow is from right to left).

(22)], the EASM with constant g predicts significantly larger levels

of v 7 outside the log layer in the curved region of the flow than

EASM with variable g. This is the source of the larger predicted

u'v' peak for EASM (constant g) in Fig. 8.

D. Comparison with RSM

Next, the U-duct flow is solved with an RSM using the ISAAC

code on the 209 x 77 grid. Our focus is not to compare global results,

but rather to explore in detail the behavior near convex curvature.
As will be shown, the RSM is in better agreement with experiment

at both x = 0 and at 90 deg in the bend than the three models used
thus far. These results are also consistent with Ref. 12.

Evidently, one or more of the assumptions that go into the deriva-

tion of the EASM is causing the model to deviate from the RSM

result for this flow in the curved (bend) region. Recall that two of

the primary assumptions in developing the algebraic relationship are

given in Eqs. (5) and (6). Therefore, we scrutinize the computed lev-

els of each of these terms from the RSM solution. Figure 11 shows

contours ofDbH/Dt (nondimensionalized by L/aoo) near the start of

the bend. Other Dbq/Dt terms are of similar magnitude. Near x = 0

(0 deg in the bend), Dbtt/Dt is negative (at a maximum level of about

-0.01), followed by a positive peak at a maximum of approximately

0.012 somewhat downstream. These levels of Dblt/Dt are of the
same order of magnitude as the nondimensional at SH levels at the

same locations (not shown), which indicates that the first term in
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Eq.(1)(=Db/Dt)isimportantinthisregionoftheflowandshould
notbeneglected.The79U - (rq/2K)79n, terms computed from the
RSM solution are very small in comparison with the Db/Dt terms,

of order 10 -8. Therefore, it is not expected that neglecting them in

the derivation of the EASM has any impact for this flowfield.

The deficiency in imposing the equilibrium condition Db/Dt = 0

in the development of the EASM is apparent. In a strongly curved

flow, such as the U-duct, the equilibrium condition needs to be
relaxed. In the context of the algebraic stress formulation, it has

recently been shown 34 that imposing the equilibrium assumption

on the anisotropy b in a locally varying noninertial coordinate frame
throughout the flow accounts for the extrastrain effects introduced

by the curvature. This new (local) frame is simply the principal
axes of the strain rate tensor whose rotation is a measure of cur-

vature effects on the flow. The equilibrium condition imposed in
the noninertial frame can then be recast in the inertial frame as an

inhomogeneous condition on Db/Dt. Spalart and Shur 35 also used

the principal axes frame of reference to account for system rotation

and curvature in sensitizing the S-A model.
Under a Euclidean transformation, 36 the turbulence anisotropy

tensor bq transformation from a Cartesian base system is simply

given by

_[ P _-J (30)= g i bpXq

where ,_J (t) is the proper orthogonal tensor (and X/p is its transpose)

that represents the transformation to the local principal axes frame.

It then follows that the material derivative of Eq. (30) yields

Dr = -Xi --_ "-xqj +

If the equilibrium assumption is now applied to the transformed
frame, so that Db/Dt = 0, then Eq. (31) can be rewritten as

Db_ k q k q

D"--t"= bpQ_ - 9ab k ,

or, in matrix notation

Db D
= bl2 - 12b, 1"2= X_--IX] (33)

Dt Dt

Equation (33) is the (inhomogeneous) condition to be applied to

Db/Dt in the inertial frame instead of the equilibrium condition

Db/Dt = O. Equation (7) then becomes

-(l/a4)b - a3(bS + Sb - {{bS}l) + a2(blV - Wb) = R (34)

where the absolute rotation rate tensor W is given by

W- (1/a2)f2 (35)

Thus, the only change to the explicit algebraic model formulation is

to replace the rotation rate tensor W with the absolute rotation rate
tensor W. A similar formulation to this was described by Girimaji 37;

however, he used the unit vector in the direction of acceleration

rather than the principal strain direction to define the noninertial
frame.

With this new assumption in the EASM, results at 0 and 90 deg

in the bend shown in Figs. 12 and 13 now show improved predic-

tions of u'v' near the inner wall, in better agreement with both RSM

and experiment. The main effect of the better-predicted Reynolds

shear stresses is a lower skin friction in the curved region and a

small lengthening of the separated region compared to the base-

line EASM result. Aside from this change, there are only relatively

minor effects of the curvature correction on mean-flow parame-

ters for this case. This behavior differs from that exhibited by the
S-A model with curvature correction for this same case in Ref. 38.

Shut et al. 3g showed that the inclusion of their correction term has

a dramatic effect on the separation location and extent as well as on

the surface pressures downstream, compared to the baseline model.

Most notably, the modified model significantly overpredicts the sep-

to
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aration length. Shur et al. believed this overprediction was due to

possible deficiencies in the original S-A model itself, and not to
the curvature correction. Note, however, that the S-A curvature

correction, although based similarly on the rate of change of the

principal axes, includes a heuristic rotation function that multiplies

the model's production term. This implementation method is quite

different from the current EASM implementation, which includes

the effect of curvature into Eq. (18) primarily through theft term,
which is modified by using W in place of W in Eq. (24) [W is also

used in the nonlinear term in Eq. (18), but this has a secondary effect

in this case].

An additional test case was run (using only EASM) as a further

validation of the EASM curvature correction. The duct configuration

of Smits et al. 2s is shown in Fig. 14. The flow undergoes a strong

curvature (,5/R ,_ 0.17) of short duration. The duct turns through

30 deg with a radius of curvature on the inner wall of 127 mm.

Nominal Mach number in the duct is 0.097 and Reynolds number

based on H is taken to be 3 x 10 s. We again focus on results near the

convex wall. Figure 15 shows Reynolds shear stress downstream of

the bend at x = 30 mm (where _ ,_ 21 ram). The curvature-corrected

model captures the suppression of the Reynolds shear stress in the

upper part of the boundary layer, whereas the original EASM does

not. Like the U-duct case, in spite of the change in Reynolds shear

stress, the effect of the curvature correction on mean-flow param-

eters is again relatively small. Figure 16 shows velocity profiles at
three stations downstream of the bend. There is almost no difference

between EASM with and without the curvature correction, and the

character of the experimental data is well predicted.
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V. Conclusions

The ability of three types of turbulence models to predict two-

dimensional curvature effects was investigated for a model test prob-

lem. It was shown that an EASM performs better than one- or two-

equation eddy viscosity models, provided that the variation of the

production-to-dissipation-rate ratio in the flow is accounted for in

the EASM formulation. Theoretical analysis of the EASM provided

some insight into the differences in the behavior of this model in the

curved region of the flow when g is held constant.

In their original formulations, none of the one- or two-equation

turbulence models used in this study captured the full extent of sup-

pressed turbulence near the convex wall. However, a full Reynolds

stress turbulence model did. Some of the assumptions that go

into the derivation of the EASM were investigated and compared

with the computed flowfield from the full RSM. Through this anal-

ysis, the algebraic model assumption that DbJDt = 0 was found to

be the source of error in the strong curvature region. By accounting

for the local variation of the principal axes of the strain rate tensor,

the EASM correctly predicted the suppressed turbulence in the outer

part of the boundary layer near the convex wall.
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